Analytic Conditions for Targeted Energy Transfer between Nonlinear Oscillators or Discrete Breathers
نویسنده
چکیده
It is well known that any amount of energy injected in a harmonic oscillator which is resonant and weakly coupled with a second harmonic oscillator, tunnels back and forth between these two oscillators. When the two oscillators are anharmonic, the amplitude dependence of their frequencies breaks, in general, any eventual initial resonance so that no substantial energy transfer occurs unless, exceptionally, an almost perfect resonance persists. This paper considers this interesting situation more generally between two discrete breathers belonging to two weakly coupled nonlinear systems, finite or infinite. A specific amount of energy injected as a discrete breather in a nonlinear system (donor) which is weakly coupled to another nonlinear system (acceptor) sustaining another discrete breather, might be totally transferred and oscillate back and forth between these donor and acceptor breathers. The condition is that a certain well defined detuning function is bounded from above and below by two coupling functions. This targeted energy transfer is selective, i.e., it only occurs for an initial energy close to a specific value. The explicit calculation of these functions in complex models with numerical techniques developed earlier for discrete breathers, allows one to detect the existence of possible targeted energy transfer, between which breathers, and at which energy. It should also help for designing models having desired targeted energy transfer properties at will. We also show how extra linear resonances could make the energy transfer incomplete and irreversible. Future developments of the theory will be able to describe more spectacular effects, such as targeted energy transfer cascades and avalanches, and energy funnels. Besides rather short term applications for artificially built devices, this theory might provide an essential clue for understanding puzzling problems of energy kinetics in real materials, chemistry, and bioenergetics. Preprint submitted to Physica B August 17 2000
منابع مشابه
Aspects of Discrete Breathers and New Directions
We describe results concerning the existence proofs of Discrete Breathers (DBs) in the two classes of dynamical systems with optical linear phonons and with acoustic linear phonons. A standard approach is by continuation of DBs from an anticontinuous limit. A new approach, which is purely variational, is presented. We also review some numerical results on intraband DBs in random nonlinear syste...
متن کاملEffective Hamiltonian for travelling discrete breathers
Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on th...
متن کاملDiscrete Breathers Close to the Anticontinuum Limit: Existence and Wave Scattering
The anticontinuum limit (i.e. the limit of weakly coupled oscillators) is used to obtain two surprising results. First we prove the continuation of discrete breathers of weakly interacting harmonic oscillators, provided a suitable coupling is chosen. Secondly we derive an analytical result for the wave transmission by a breather of the discrete nonlinear Schrödinger equation at weak coupling. W...
متن کاملIntrinsically localized chaos in discrete nonlinear extended systems
– The phenomenon of intrinsic localization in discrete nonlinear extended systems, i.e. the (generic) existence of discrete breathers, is shown to be not restricted to periodic solutions but it also extends to more complex (chaotic) dynamical behaviour. We illustrate this with two different forced and damped systems exhibiting this type of solutions: In an anisotropic Josephson junction ladder,...
متن کاملAnalytic Approach to Investigation of Fluctuation and Frequency of the Oscillators with Odd and Even Nonlinearities
In this paper we examine fluctuation and frequency of the governing equation ofoscillator with odd and even nonlinearities without damping and we present a new efficientmodification of the He’s homotopy perturbation method for this equation. We applied standard andmodified homotopy perturbation method and compare them with the numerical solution (NS), also weapplied He’s Energy balance method (...
متن کامل